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FOREWORD

<

The research presented in this report was conducted underyProject
METTEST (Methodological Issues in Criterion-Referenced Testing), under
the auspices of the Unit Training and Evaldation Systems (UTES) Techhi-
cal Area of the Army Research Institute for the Behavioral and Social
Sciences (ARE).. The goal of Project METTEST is to provide quantitative

'Methods for evaluating unit'proficiency. The means for achieving this
goal include basic research in test construction methodology, measure-
ment and scaling models, and decisionmaking implications of test score
interpretation. ARI Technical Paper 306 is the initial publication on
the project.

Related, ongoing programs within the UTES TechniCal Area include
evaluation of small, combat units under simulated battlefield conditions°
(REALTRAIN), qualification of tank gunnery crews and revision of Table
VIII (IDOL), and improving the standardization and reliability of the
Army Training and Evaluation Program (ARTEP).

Anticipated future research under Project METTEST includes the
development of a computer-programed model for performance evaluation
and several additional 6.1 basic research grants for the development
of measurement, scaling, scoring, decisionmaking, and quality control
models for use in performance evaluations when criterion-referenced
testing procedures are employed.

The present research was conducted by personnel of the UTES Tech-
nical Area as an in-house research project, under Army Project
2Q762722A764. G. Gary Boycan supplied a key creative insight into the
"misclassification problem." An .earlier version of this paper has been
printed in the ProCeedingg of the October 1976 Naval Training Equipment
Center (NTEC) Conference.

//'
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BAYESIAN METHOD FOR-EVALUATING TRAINEE PROFICIENCY

BRIEF

Requirement:

The educational decisionmaker typically wants to know if a student
can perform a job at some prespecified level of acceptability. If the

student's test score is above the minimal passing standard, the indi-
vidual may be classified as a master--otherwise, as a nonmaster. The

present paper describes a mathematical model that provides maximal
classification accuracy with the least number of test items or trials.

Classification Model:

Estimates of several.variables must be provided as input to the
model, which is derived from Bayes' Theorem. Two of these variables

are probability estimates: the prior expectation of selecting a master
froth the student population and. the conditional probability that a known
master would answer a randomly selected test iteri correctly. Two other
variables--the minimal passing standard and the number of test items---
are under some, degree of control by,the tester. Furthermore, the effect
of the latter two variables is an interaction, because the 115gfl shows
that classification accuracy is not invariant over different test lengths
when the same, percent correct score is attained by examinees.

Findings:

A computer simulation of the model demonstrated the effects of -
simultaneously varying five variables on classification accuracy. The

arbitrary nature of defining the criterion for mastery,as'a percent
,correct test score was critically evaluated. Testing maybe irrele-
vant in situations where the test length is less than the minimal num-

ber of items.

Utilization of Findings:

'Me model shows explicitly the-risks involved in using a given
length bf test once the tolerance for misclassification error has been

specified by the examiner.

9
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A BAYESIAN METHOD FOR EVALUATING
TRAINEE PROFICIENCY

INTRODUCTION

No instructional system is complete without a strong testing com-
ponent. Any student who begins an instructional program should be
able to achieve all the objectives that the program was designed to
teach. However, some students may require remedial or other supple-
mentary instruction to master all of the objectives, even though the
program was carefully developed. Furthermore, during the development
of the instruction, test data from prospective students are required,
first to revise and later to validate the instruction.' To support the
instructional development activities and to make decisions about the
abilities of students who have completed instruction, a powerful test-
ing"prograth is necessary.

The final desired output of a test for a given examinee is infor-
mation that can pinpoint ability to do whatever is required by an ob-
jective. That is, the examiner observes a test score and then infers
the ability of the examinee. This paper outlines a "Bayesian" method
for drawing such inferences. It also discusses and illustrates the
adequacy of the method as a function of the number of test items ad7
ministered and the effects of the tester's beliefs about the quality
of the examinee pbpulation on the inferences drawn.

Using the Bayesian method,-the testers hypothesized varying num-
bers of ability groups so that the Classification of examinees into
these ability groups is most useful to the overall instructional sys-
tem. For example, the simplest case is to classify examinees into two
groups, the first group containing those who have mastered the objec-
tive, and the second containing those who have not. Alternatively,lone
could hypothesize three groups, consisting of masters, nonmasters, and
an intermediate group containing.people whose skills are almost" satis-
factory and, who could be brought up to the mastery level with relatively
little additional instruction. The Bayesian model presented ip;this
paper explores up to three levels of mastery, although this number
could easily be expanded. The model also explores the effects on de-.
cisionmaking (correctly classifying masters and nonmasters)- if more
than two ability levels have been hyp9thesized but are then collapsed
to form just two groups--madters and nonmasters.*

TRAINING TO MASTERY

Ideally, the educational decisionmaker wants to know if a person
(student, trainee) can do a job at some prespecified level of accepta-
bility. A student who scores above the minimal passing standard on a
test may be classified as a master; if the score is below the minimal

1
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passing score, the stu t. would be termed a nonmaster. But since data
always have some error variability, misclassifications are likely to

., 4
: occur.

41:

4"

Mater

-Nonmaster

True
..Ncompetency state

Non-
.

Master master

True 'False
'positive positive

False
negative

True,

negative

Ideally, the probability of a true positive should be much greater than
that for.a.'false positive, and the probability for a true negative
should be much greater than that for a false negative.

To evaluate how well our testing program achieves this goal, we
want to be able to infer as accurately a possible the conditional
probability of the mastery Tor nonmestery) state, given the test score
data, p(MlIT), p(M2IT). Out first problem is what amount of data is
this probabilistic inference based upon? Suppose that the passing
standard was ams of the test items correct. A student with 33 out of
40 items correct" would pass and would be classified as a master. Now

suppose that on another form of the test (or a test given over the same
material by another instructor), another student gets 25 out of 30 test
items correct. This student would also have met the 80% correct cri-
terion and would be classified as a master. The model presented in
this paper will show that the p(MlIT) varies systematically with the
number of test items, along with the minimal percentage correct for
passing.

We may also ask: How is the accuracy of inference about mastery
affected by postulating more than two states (mastery and nonmastery)?

. and can the data from various states be combined without seriously. af-
fecting the final p(MlIT). inference? For example, suppose that there
are, intermediate states of partial mastery. The following decision
model shows that p(MlIT) can be more validly estimated when the mastery
states are processed independently, but thateducational decisionmakers
will not sacrifice very much classification accuracy if indeed they do
dichotomize multichotomous data. We suggested that defining an inter-
mediate group which required minimal remediation might be useful for
some instructional systems. The model shows that the probability of
being in the mastery grOup when indeed the datum was a test score .

2 13
0,



obtained by a master will be increased if thegther'data ake processed

'independently. The, concept of "independent processing" requires-that

- all nohMastery groups main 'n their integrity- rather ahan being eg-
g

.gregated into one genera zed nonmastery group.

4

Hayes' Theorem

.CONSTRUCTION OF THE MODEL

A

The statistical model which we have applied for, classifying students
into., mastery and nonmastery groups, given their test scores, is based

upon a form of Bayes' Theorem:

p(mlIT), [perimup(M1)
rM1)p (M1)

+ p(TIM2)p(M2)]

Here we assumed that the two states of nature (master and nonmaster)
are mutually exclusive and collectively exhaustive, and that T is the
test score observed. ,We also assume that the test is dichotomously
scored and that the items are independent.' A correct response is de-
noted "1," an incorrect response is denoted "0," and the total test
score is simply the number of correct responses. What we seek to find
is the term on the left, the probability that:a given student is a mas-
ter, having been given his test score.' To find it, we need an estimate
of the prior probability of mastery (p(Ml)) in the population of stu-
dents from which this student was drawn. -The prior probability of mas-
tery can be considered the proportioh of studehts in the examinee popu-
lation we think are masters. For example, iE our instruction were very
good, the prior probability of mastery would be high, and most of the
students who completed the instruction should have mastered the objec-
tive. The actual number specified for the prior probability of mastery
may be an informed guess based'On experiene,or it may be based on the

empirical results of tests given to previous classes of similar students

We must also estimate the conditional probability of a certain
test, score, given that the student wh9 receives that score is a master.

example,xample, if only one item is administered, the conditional proba-
bility of a score of one correct, given that the student was a master,
is simply the probability that a master responds correctly. WeMay
estimate this conditional probability empirically based do previous
student'groups, or we may provide a best guess as to how well masters
perform, or this conditional probability may reflect,a minimal standard

of achievement. We shall show how the p(MIT) will vary as a function
of the prior expectations of the teAter, number of test items, and con7
ditional probabilities, p(TIM), after an example to illustratd the
computations.

3



Suppose that a student chogen at random from a traineeipopulation 1

is given a criterion-reference test, and that ihe passes the test.
Given the results of the test, what is the probability that the stu-

is indeed a master of that particular course of instruction? To

calculate the probability, we obtain the following information from
the educational expert who administered the CRT:, The probability that
a master would obtain a passing score = .90, (p(TIM1) = .90); the proba-
bility that a nonmaster would obtain a passing score = .05, (P(TIm2)
.05); and-the prior probability of . ndomly selecting a master from
this trainee population is etpal 70, that is, we:believe that 70%
Of Phis, and similar previous.tr opulations maybe assumed to be
composed of masters. .Substitir5 pe values into the formula

P(MliT) 7/.9 x ..?
x

.7 + . 705 x .3

equals .977. Hence, before tpe test score was available, the proba-
bility that this student was a master was .70, but after a passing score
was'observedi, the probability that this person is a master has increased
to .977. (The probability of this btudent's being a nonmaster, given
the same passing score, p(M2IT), would be equal to 1 - .977 or .023.)

To generalize the Bayesian approach to a wide variety :of applica-
tions in evaluating training effectiveness, two additionsMusi be made
to the basic £ormula. These additions are the number of:trials or items
onfthe test (N), and the number of,hypothesized mastery/states (S). The

derivation of the general Bayesiafl formula for this purpose was origi-
nally presented by Hershman':

N.
H p(Milti)

P(milT)
j=1

tc. p(Milt.)
S

) p(mi)N-1 j=1
N-1'

i=1 p(Mi)

ti

In this formula, p(Milti) equals the conditional probability of a-per-
son in the ith mastery state getting the jth test item cofrect; p(Mi)
is the prior probability of the representation of the ith mastery state
in the student population (the percentage of students who are estimated

1Hershman, R. L. A Rule for the Integrati of Bayesian Opinions.

Human Factors, 1971, 13, 255-259. _

15



5-74

to be in the'ith mastery state); and p(MiJT) is.the conditional probe-
bilityof a particular student being in,the ith mastery state given his
total test score. A computatiOnal example showing how the for a is
applied for three mastery statesAi given, in the appendix.

Variables of Interest in the Present Simulation

In the typical situation forlevaluqing training proficiency, the
tester haasome control over the number of items or trials that he will
include on a test. In a performance-based test, each trial m,be rather
expensive(su h,as tank gunnery or field artillery, where each shell
costs over $10 ), and so the tester will be obliged to use a minimum
number of trials to meet His decisionmaking requirements. Consequently,
we examined the effect on p(MIT) when N took on values of 5, 10, 20, and
40 trials.

The tester also has responsibility for assigning reasonable values
to the prior probabilities of mastery,(denoted as p(Mi), and to the con-
ditional probabilities of a,known master (or nonmaster) ,getting a ran-
domly selected item correct, denoted as p(tJMi). Values for both the
prior and conditional probabilities were systematically manipulated in
the present simulation.

The number of mastery states is a variable which the trainer and/or
tester may aleoset. In some measurements of trainee proficiency it
maybe most.,aPpropriate to dichotomize on an all-or-none basis, wherea
other training evaluation contexts may suggest a "pass, give refresher
training, recycle failures through complete training" trichotomy. More
than three mastery states may of course be hypothesized, but the compu-
tations in, the present and all other models of proficiency evaluation
become extremely complex. (However, we are developing a computer program
that will handle up to five states of mastery.)

4

I

The dependent variable of main interest is the percent of items
answered correctly. The tester may decide that 70% is a passing score.
But the 70% value is not an absolute standard, since it is dependent
u n the number of test items and the prior and conditional probability
e timates. In the present simulation, three values of percent correct

served scores were used: 60 %,170 %, and 80%.

Changes in p(MIT), Assuming Two Mastery States

The fundamental purpose of the present study was to investigate how
the probability of mastery, ,classification changes as a function of the
simultaneous manipulation of up to four parameters (independent vari-
ables). The scope of the study is not exhaustive, since only several
values of each of the four variables were used. However, some general
trends do seem to emerge,as'can be seen in the following figures.

5
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Figures 1, 2, Snd 3 showthe results of applying the model to a

situation in which only two mastery groups (mastery and nonmastery)
have been hypothesized. The data poin epresent the probability that

a trainee is a master, given (condi onal upon) his total test score,

P(M The lines show how the P(M T) changes as a function a varia-
tions in tile four parameteis: prior expectation of mastery, the per-
,centage correct items observed, the conditional probabilities of botti

a master and a nonmaster responding correctly to an item, and the num

ber of .tems comprisingythe-test.
4r,0

Figure 1 represents a testing Situation in which the training was
of extremely high quality, since-the proportion of masters in the%train-
ee population was assumed to equal 9.9. That is, P(M1) = 0.9. Fig,

ure lA portrays the situation in which both masters and nonmasters 4eve
attained.a rather high degree of proficiendy, since the probabilitybf
a master responding correctly to any given item is 0.9, and the proba-

bility of a nonmaster responding correctly is 0.6. If a person scores
80% on a,5 -item test,-the probability that he is a master is approxi-
mately .91. This probability drops to .65 if a 60% score on 5 items,
(3 out of 5 correct) is obtained. Note that when the test length is-
increased to 40 items, an 80% score (32 correct) Produces a .99 proba-
bility of mastery. However, a score of 60% (24 correct) yields an es-;
sentially zero probability of mastery. The effect of thtteSt length,
variable on classification accuracy is dramatic: If 4.ie, p(MIT) had to

be at least 0.5 for a person to be called a master, then scores Of,60%
on a 5-item test would lead to mastery classification. : Bu*,a60% score
on a 40-item test-would lead to nonmastery classi4cationY.

Figure lA lA also illustrates the effect of "prior beliefs" on p(MIT).
One might suppose intuitively that the chances were Vallhigher,that a
person who obtained a score of 60% (even from a 5-item 'test) came from
a population whose probability of correctly answering an item was 0.6

than from a population whose probability of answering an item correctly
was 0.9. However, the relative proportions of the two)groups(expressed
as prior belief in mastery and nonmastery, or p(M1) =..9 and p(M2) = .1,
respectively) are such that the probability of a. person beihg in the
mastery state is approximately 0.65 for a score of 3 correct (60%) on
a 5-item test. Only by increasing the number of test items can the
strong prior bias in favor of the mastery decision be reversed. Fig-

ures 2A and 3A show what happens when prior beliefs are not so heavily
biased in favor of mastery. In neither case is, the probability of being'
in th& mastery state above 0.5 for scores of-less than,(80%. But Figure

1A suggests that when prior beliefs heavily favor one grOup over the
other, longer length tests should be used. Otherwise, the amount of

data may not be sufficient to force a change in the originally held
prior beliefs.

6
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The effect, of changing the prior beliefs concerning the proportion

of masters and,inonmasters in the examinee population, while holding. all

other parameters constant, can be seen by comparing corresponding Graphs
A, B, C, and .D in Figures 1, 2, and 3.

The impact of prior information on classification accuracy is very
significant: positively so,if the priors are accurate; and unfavor-
ably, if the priors are inaccurate. Novick and Lewis2 claim that if
the criterion level for mastery is kept constant, then low priorS will
require high test scores to convince the (skeptical) decisionmaker that
the examinee has attained the criterion level for mastery., Further,

cfligh priors will allow lower-test scores to convince a (less skeptical)
decisionmaker that the examinee had attained the same criterion level
f= oastery. In summary, if prior information is strong but inaccurate,
then longer tests will be needed to overcome this bias; but if the
prior information is strong and accurate, then test lengths can be re-
duced by 50%, for example) relative to the number of items that would
be required to reach the same decision with no prior information.

The effect of changing the probability of a correct response,
P(11Mi), can be seen by comparing Graphs A, B, C, and D for Figures 1,

2, and 3. For example, the only difference between Figure lA and Fig-
ure 1B is that the p(11M).) changes from 0.9 to 0.8, all other parameters
being held constant. (This change might reflect a lower level of re-
quired proficiency and, hence, less training, for Graph B than for A.
Or perhaps previous test results indicate that masters of the instruc-
tion respond to items with a probability of correct response equal to
0.8 rather than .0.9.)' In any case, the effect of this small change in
the P(IIM1) on,the p(MIT) is readily apparent. For any test length or
observed test score, the probability of being in the mastery state is
greater in Graph B than in A. This shift is most obvious for the 70%

observed correct curve. Notice that p(MIT) on:Graph A fdr an observed
score of 70% (28 out of 40 correct) is approximately 0.04. However,

the value for p(MIT) in Graph B for 70% of a 40-item test correct is
0.87.

The main reason for this abrupt change from Graph A to B (inFig-
ures 1, 2, and 3) is the lowered requirement for mastery, from 0.9 to

0.8. The probability that "0.9 persons" score only 70% correct on long
tests is relatively low. But when masters are defined as those trainees
who come from a.population with a probability of responding correctly
equal to 0.8, the probability of their scoring 70% on a long test is

high. One of the most-difficult jobs for an instructional designer is

2
Novick, M. R., & Lewis, C. Prescribing Test Length for Criterion-

Referenced Measurement. In C. W. Harris, M. C. Alkin, & W. J. Popham
(Eds.), Center for the Study of Evaluation Monograph Series in Evalua-
tion, III: Problems in Criterion-Referenced Measurement. Los Angeles:

U.C.L.A. Center for the Study of Evaluation, 1974.
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to describe the level of capability required of gradilates and the level

of capability actually achieved. Comparison of these graphs indicates

the magnitude of the effect that these specifications can have on the

classification of trainees.

'Graphs C and D of Figures 1, 2, and 3 further illustrate the ef-

fect of variations in the, probability Of correct responses. The only

difference between Graphs B and C is that the probability of a correct

response from a nonmaster decreases from 0.6to*0.5., .The effect of

this decrease in correct response probability from a nonmaster is to

increase the probability that someone with a score of 70% or 80% will

be a master. Note that the 70% and 80% curves are higher in Graph C

than in B. Not evident from the graphs is the additional result that

nonmasters are less likely to achieve a high score in.0 than in B, since

p(11M2) = .6 in B, and p(11M2) = .5 in C. Finally, Graph D portrays an

extreme case in which neither masters nor nonmasters are responding at

particdlarly high levels. However, the level of performance for non-

masters is so low (0.4), that even for observed scores of 60% the proba-

bility of being in the mastery state exceeds 0.8 for all test lengths,

except for 5 and 10 items in Figure 2, and 5, 10, and 20 items in

Figure 3.

Further detailed analysis of these figures is not included in this

paper. In comparing the 12 graphs against each other, note the magni-

tude of the changes in p(MIT) when small changes have been made in the

prior beliefs, in the correct response probabilities, and in the percent

correct observed responses. The implication is that extreme care must

be taken when specifying parameters ink,a Bayesian approach to testing

and decisionmaking. If the parameters are realistic, great savings in

.testing time and expense, and increased confidence in decisionmaking

are possible. (Novick & Lewis, 1974). However, if the parameters are

not realistic, there is a-very real danger of misclassifying many ex-

aminees. The next section of this paper deals with an elaboration of

the model to three mastery states, thus helping to quantify sources

of classification error.

Elaboration to, Three Mastery States

Figures 4, 5, 6, and 7 represent cases for which three mastery

states have been hypothesized. InFigures 4 and 6 the probability of

a correct response for a person assumed to be in mastery state M1

equals 0.8; for mastery state M2 this probability is 0.6; and for mas-

tery state M3, it is 0.5. These values could correspond to the situa-

tion in which the nonmastery group was divided in half. That is, those

persons whose probability of getting any given item correct is 0.5

(comprising mastery state M3) would need extensive retraining; whereas

those whose probability is 0.6 (comprising mastery state M2) would

merely need selective retraining. People in mastery state M1 haye a

probability of 0.8 for making a correct response and may therefore be

considered as*"masters" who have successfully passed training.

11
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For Ffgures 5 and 7, the corresponding,probabilities of a correct

response farleople in mastery states Ml, M2, and M3 are 0.9', 0.8, and

0.6, respectively. These probabilitries might describe a situation in

which the mtery group was dichotainized, perhaps in an attempt ,to iden-

tify thosecstudents:who had achieved-an exceptionally high level of pro-

ficiency, 4-tite, p(11M1) = 0.9.

InFlg:
of examinees
p(MA,= 0.2..
are 0425,
'and '44.1

amine
6 and

are hs umedN

is 4 and 5, the prior probabilities (or assumed proportions)

in each mastery state are: p(M1) = 0.5, p(M2) = 0.3, and

LIn Figures 6 and 7, the corresponding prior *probabilities
0, and0.25, respectively The prior values in Figures 4

bias toward higher levels of mastery (50% of the ex-
Umed to be type M1 masters), whereas the bias in Figures

the intermediate level of mastery (50% of the examinees

be type M2 'masters) .

. .

edetai d analysis of Figures 4 and 5 provides.the basis for an
.;interpretatiO -oA Figures 6 and 7, which is an exercise left to the

reader. Th three graphs, labeled A, B, andC represent the probability
-

that an indItidlipl is in mastery state MIi, M2, and M3, respectively.
Graph'0 represents the probability that a person is in mastery state
M1 after mastery states M2 and M3 have been combined into one composite

state.: ,

Graph A f Figure 4 shows the probability that an individual is

in- mastery s Ml, given observed scores of 60%, 70%, aAe 80% correct

0 , and 40-item tests. Thus, for an observed'score of 4
out-of 5 cAtect-, the probability that this person is in mastery state

Ml-ls about 0.65. But if this same person scores 32 out of 40 (Still

correct), the probability that he is an Ml master jumps to 0.98.

s are similar to those obtained:When two mastery groups

were thesized, and again illustrate the, effect of increasing test

length on the level of confidence in the mastery classification p(MIT).

The probability of being in mastery state M2, given obServed

scores, is plotted in Graph B. if'a person got 4 out of 5 co pct, the

probability of being in state M2 is about 0..25. However, if he got 32

out of 40 correct (still 80% correct), this probability plummets to

0.02. Finally, using these same test score values, Graph C shows that

probability of being a type M3 master is-0.10 for 4 out of 5-cor-

r t, and nearly zero for 32 out of 40 correct. This result makes in-

tuitive sense, because there is only 20I6 of type M3 (non)masters in

the examinee population, and the probability of their getting any item

correct is only 0,.50, which is a long way from 80% observed correct.

Atice that for any given test length and percent correct, the

sum of the probabilities of being in states Ml, M2, and M3 equals 1.0.

Comparison of Graphs A, B, and C shows that when either 70% or 80% of

the items for any test length are correctly answered, the probability

of being in state M1 is greater. than the probability.of being in either
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state M2or M3. That is, both the 70% id 80% curves are higher in
Graph A than in either Graph B or C. Foi an observed score of 60%,
the probability of being in state M2 is greater than for M1 or M3.
The probability of being in state M3 is rather low for all values of
test length and percent correct observed in this particular example.

Graph D depicts the probability that a person is in mastery state
Ml, as-opposed to a new nonmastery state composed of'both M2 and M3.
It can be seen that when states M2 and M3 have been thus combined, the
probability of being in state M1 is greater than when all three states
Were analyzed independently. For observed scores of 70% or80% correct,
there is slight difference in the decisions that would be made under the
"independence" versus "composite" conditions. However, if a score of
60% were observed, the possibility of distinguishing between M2 and M3
would be lost when those States were combined. This loss of informa-
tion may be very important if there is a large difference in cost be-
tween the selective training required for people in the M2 state and
the extensive retraining needed for those in M3. This example also
illustrates the potential, significance of maintaining the integrity of
the various nonmastery states. If the instructional decisionmaker knew
the p(M1) with great-accuracy and also knew that there were two nonmas-
tery states, but decided to combine the two states of nonmastery into
just one state, he or she would be throwing away potentially valuable
information. We shall return to this point in the discussion of Fig-
ure 5.

The interrelationship between test length and -three hypothesized
mastery states becomes even more apparent in Figure 5. For example,
Graph A shows that the probability of being in'state' M1 for 80% correct
on a 5-item test is:,,about 0.48. The probability of being in state M2
(shown in Graph B) for 80% correct on a 5-item test is about 0.36.
There is thus a greater chance that a person whose score is 4 out of 5
is in M1 (p(M1IT) = 0.48); instead of M2 (p(M2IT) = 0.36)sor M3
(p(M3IT) = 0.16). However, if a score of'80% correct were observed
on a 40-item test, the graphs indicate that a much differeht decision
would be appropriate. In this case, p(M1IT) equals 0.21, p(M2IT) =
.78, and p(M3IT) = 0.01.. Hence, people scoring 32 out of 40 correct
should be classified as type'M2 masters. Also note that a score of
60% for any test length implies that these people should be placed in
the M3 state.

For the data used in Figure 5, the probability of finding M1 type
masters is overall quite low. Instead, for the levels of achievement
demonstrated by obtained scores of 60%, 70%, or 80%, it is more likely
that such scores were produced by people in mastery states M2 (p(11M2) =
0.8) and M3 (p(11M3) = 0.6).

-a
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Graph D in this figure also represents the probability that a per-
son is in mastery state M1 as opposed to the new (non)mastery state
formed by combining states M2 and M3. In this example, most of the
probabilities in Graph D are lower than in Graph A. Figlance back at
Figure 4, Graphs A and D, reveals that the combination of states M2
and M3 increased the probability of classifying a person with a given
test score as a type M1 master. Inspection,of the trends in Graphs A
and D of Figures 4, 5, 6, and 7 suggests that the effect of combining
mastery states is to enhance the trend of the uncombined state. That

is, if the probability of being in state M1 is high when the three
states are treated independently,.the p(MlIT) will increase after M2
and M3 are combined. Conversely, if p(M1IT) is low when the three
states maintain their integrity, then combining states M2 and M3 tendd
to decrease the p(MlIT).

Flow -Chart Analysis of How the Bayesian
,Model Was Developed

The impact of adding a third mastery state to the development of
the model can be illustrated by tracing the logic that is required in
formulating a description of the examinee population. (Refer to accom-
panying flow chart for a schematic summary of this discussion.) The
first question the decisionmaker must ask (and which we considered)
is: Are there two or three states of mastery inherent in the examinee
population .(Step A)? If two states are posited, parameter estimates
for p(m1), p(M2)', P(11M1), and p(11M2) are specified, along with plausi-
ble test lengths and values for the percent correct (Step B). The out-
put of the Bayesian processing is the probability that a particular
person is in the mastery state, p(M11T1 (Step D). A unique graph for
each of Figures 1, 2, and 3 was obtained by holding the prior and con-
ditional prObabilities constant while simultaneously varying the test
lengths and percent correct that would plausibly be observed (Step E).
If three states are hypothesized, parameter estimates for p(M1), p(M2),
p(M3), p(11M1), p(11M2), and p(11M31 need to be specified, along with
values for test lengths and percent correct -(Step F).

Now if three states are postulated, a second decision must be
made (Step G). It would seem to be usually desirable to determine the
probabilities of a person's being in each'of the three states (Step I).
Having obtained these probabilitieS for selected values of prior and
conditional, probabilities and over a range of test.lengths and percent
correct scores, Graphs A, B, and C can be drawn such as those shown in
Figures 4, 5, 6, and 7 (Step J).

However, in some instances it may be more convenient to combine
the information known about two of the three mastery states. For ex-
ample, even though one mastery state and two nonmastery states are hy-
pothesized, the decisionmaking process may require that people be
divided into only two groups--"mastery" and "nonmastery." In the
present example, states M2 and M3 were combined (Step K). The result
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of Bayesian processing on these combined data is the probability that
a'person is in the new mastery state (Step M). Iteration of this pro-
cedure for various test lengths and percent correct scores over the
same prior and conditi6nal probabilities yields Graph D curves, such
as those of Figures 4,n, 6, and 7 (Step N).

The differences that result from following each of the three paths
in the flow chart can be seen by comparing Figures 3A, 5A, and 5D. In

each case the prior probability of being in mastery states Ml was set
equal to 0.50, and the conditional probability that a type Ml master
would make a correct response to an item was set equal to 0.90. Fig-
ure 3A corresponds to path A,B,C,D,E in the flow chart. Figure 5A
corresponds to path A,F,G,H,I,J; and Figure 5D corresponds to path
A,F,G,K,L,M,N.

In Figure 3A, p(11M2) = 0.6, that is, a nonmaster has a 60% chance
of correctly responding to an item. However, in Figure 5D the nonmas-
tery state is the combination of states M2 and M3, with probabilities
of responding correctly to an item of 0.8 and 0.6, respectively. The
effect of combining M2 and M3 is to create a new (non)mastery state,
where the probability of a correct response is a, weighted average of
the values for the uncombined groups. By defining a relatively high
ability intermediate state and then combining it with a relatively low
state, the probability of being in the highest masterystate is lower
than if that intermediate state remained undefined. In fact, if the
Figure 5 values ofthe prior and conditional probabilities are valid
representations of the "real" states of mastery, but the valuesf Fig-
ure 3 (which are a simplification of the Figure 5 values) are used for
decisionmaking, then peopleachieving scores of 80% will be falsely
classified as type Ml masters.

The differential trend between Graphs. A and D of Figure 5 is note-
worthy, although the absolute magnitude of the trend is rather small.
For different parameter estimates (of prior and conditional probabili-
ties), the effect of combining groups may be much more extensive. Note
also that the information provided in Graph D refers only to theproba-
bility of a person's being in the mastery state and does not directly
show the loss of information about the two discrete nonmastery states
that have been combined. Furthermore, when two mastery states are
combined and contrasted to a third nonmastery state, the changes in
the probability of being in the newly defined mastery state will often
be quite different from the probability of being in the original mas-
tery state.

Lt must be emphasized that unrealistic descriptions of the examinee
population (in terms of number of mastery groups) can cause severe dis-
tortions in classification accuracy. For example, had the decision-
maker hypothesized only two states when, in fact, training had produced
three fairly distinct states of, proficiency, the results of his analysis
could be highly misleading. Thus, note that the 80% line of Figure 3A
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ascends as more items are added (i.e., p(MlIT) increases), whereas the

80% line of Figure 5D descends (i.e., p(M1IT) decreases) as more items

are added.

Caution must also be observed in the opposite case, where one
might be tempted to specify more states of mastery than are actually
present, in an effort to extract more information than is.justified by

the test data.

The present Bayesian model is not limited to three mastery states.
Exploratory analyses have been conducted with up to five mastery states,

.and it is also hoped that the model can be generalized to deal with con-
tinuous distributions.

TEST LENGTH AND MISCLASSIFICATION ERROR

One of the most important questions that must be answered in de-
signing a training evaluation program is "What is the probability of
falsely classifying a person on the basis of a given observed score?"
It is also possible to turn the question around and ask "How long must

a test be, and what score is required for classification decisions to
4 be made with some specified lower limit of misclassification?"

Figures 8 and 9 demonstrate how the Bayesian model can be used to
answer these two questions. Assuming that the prior and conditional
probabilities are realistic and fixed, the important variables are then
test length and cutting score. Suppose that p(M1) = 0.9, p(M2) = 0.1,
p(11M1) = 0.9, and p(11M2) = 0.6 as in Figures 8 and LA. In this ex-

ample, the prior belief that an untested trainee is a master is very
high, p(M1) = 0.9. A reasonable question might therefore be "What
score must be observed such that a nonmastery decision can be made with

at least 90% confidence?" (In other mords, what data are required to

force a reversal in the prior belief?)

To be 90% confident of a nonmastery decision, p(M2IT) must be

equal to at least 0.90. Since the sum of p(M1IT)and-p(M2IT) equals
1.0, p(M1IT) must therefore not be greater than 0.10. Referring to.

Figure 8, a horizontal line crossing the ordinate at 0.10 can be drawn.
This line crosses the curve for a 5-item test at a point corresponding
to 26% correct. The next lowest possible test score is one correct
(20%), so the decision rule is that all:persons scoring one correct or
less should be considered nonmasters. The point on the ordinate cor-

responding to 20% correct on the 5-item test is about 0.05. Hence,

the final decision rule states that nonmastery decisions based on an
observed score of 1 correct out of 5 can be made with 95% confidence
(1.00 - 0.05 = 0.95). For 'observed scores lower than the cutoff score,

the confidence in making a correct decision must increase. Continuing
with.the present example, the p(M1IT) if zero correct are observed is

O
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virtually equal to zero. Hence, those persons who get no items right
may be classified as type M2 nonmasters with nearly 100% confidence.

A similar analysis applied to the 40-item test curve indicates
that the cutting score should be about 73% correct. The next lowest
possible score to 73% is 28 correct out of 40 items, or 70%. The proba-

bility of mastery; given an observed score of 28 correct, is about 0.04.
At such aa low value of p(MlIT) the chances for misclassification using
a 5-item test and a 40-item test are almost the same. However, the ob-
served percent correct at which the nonmastery decision is made for the
two tests is 20% on the 5-item test and 70% on the 40-item test.' Super-
ficially, two tests.of different lengths would seem to produce the same
decision outcome, and longer tests may not really be necessary for re-
ducing classification error.

To appreciate the benefits gained from using 'longer tests, we
.must examine the entire curve. Note that at 80%. correct, the 5-item
test yields a p(MlIT) equal to 0.92. This result means that, on the
average, 8% of the mastery decisions will be in error, since p(M2IT)

equals 0.08. For the 40-item test, the probability of mastery, given
80% correct, is about 0.99. That is, there is only a 1% chance that
an examinee of nonmastery competence would be incorrectly classified
as a master.

A test that distinguishes sharply' between masters and nonmasters
'is one in which the probability of mastery is close to either 0.0 or
1.00 for most obtained scores. On such tests there is only a small
region in-which classification error is large. For example, in Fig-
ure 8, for the 40-item test the region where p(MlIT) is greater than
0.1 and less than 0.9 extends from 71% to 77% correct. This means that

the probability. of misclassification (calling a true master a "nonmas-
ter," and vice versa) will exceed 0.10 only when observed scores range
from 71% to 77% correct. In contrast, the region of the 5-item test
curve for which p(MlIT) is greater than 0.10 and less than 0.90 extends
from about 26% to about 79% correct. Hence, there is a much larger
region for which the probability of misclassification exceeds 0.10.
Therefore, if classification accuracy is to be maximized over the en-
tire range of possible t
a very long test woul

'bility ora, given maste
one.

t scores, longer tests are required. Ideally,

uce a step function, for which the proba-
state would be very close to either zero or

Figure 9 can be anal
However, Figure 9 has on
attention.' If nonmaste
and a horizontal line at

ed in a manner similar-to that for Figure 8.
utstanding characteristic that merits special
decisions must be made with 90% confidence,
(MIT) ms 0.1 is drawn, the line does not in-

tersect the curve for the 5-item test. This means that it is not pos-
sible to classify a nonmaster with 90% confidence if a 5-item test is
used, given the parameters used in Figure 9. If resource or time con-
straints are such that no more than five items may be given, and if the
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parameter values used in Figure 9 are realistic, and if 90% confidence
for mastery decisions are required, then there is no reason to test.
Testing is irrelevant because no matter what score is observed, in-
cluding zero correct, the decision rule compels a mastery decision to
be made. In fact, for the present values, the probability of mastery,
given zero correct, is equal to 0.21. This simply means that if per-
sons obtaining a score of zero are classified as nonmasters, 21%'of

. 0
them will be misclassified, on the average.

The implication of these results for performance testing is obvi-
ous. Since performance tests are often rather short; it is essential
to recognize, the magnitude of misclassification error that can be in-
curred with such test 61.- Designing tests that have clear and direct
relation to actual performance is certainly a worthwhile and much-needed
effort. However, reasonable levels of confidences in classifying train-
ees must not be sacrificed merely for the sake of using conveniently
short tests.

SUMMARY AND CONCLUSIONS

1The present Simulation study highlights some very pertinent issues
for test developers and educational decisionMakers. The simulated re-
sults demonstrate explicitly the'effects that. changes in the estimates
of'the'examinee-population,qualitynumbeeCf-assumedmastery states,
criteria required for mastery classification, and test length can.haNtk\
on the probability of correctly clabsifying a particular examinee.
Furthermore, the simultaneous manipulation of combinatiens of these
parameters can produce drastic and complex dhanges in the probability,
of correctly classifying a 'specific examinee.

A unique feature of any Bayesian model is the rlfed for "pri " in-
formation. In the present context, this is the estimate of the propor-
tion of masters and nonmasters in the examinee population. The more
accurately that such an estimate can be made, the greater the value in
using a Bayesian approach: "It.is this increment in'information that
iswequivalent to prior observations which permits a reduction in test
length when a Bayesian procedure is used" Novick & Lewis, 1974, p.
149, italics dded).. If the number of items or trials that can be
given on a est is constrained -{such as the cost associated with firing
live ition in tank gunnery or field artillery), then a Bayesian
model may be desirable.

. The simulation results also demonstrate th4a criterion for mas-
tery (usually expressed as a percent correct of all poasible test items
that could be given) is not-invariant across various test lengths. The
significant implication is that the probability of correct classifica-
tion varies as a function of test length, stery criterion, and their
interaction. Classification accuracy impr1es with longer length tests
and with stricter mastery criteria. However, there is a point of
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diminishin4returns, for which 'increases in testvlength or criterion
strictness yield successively smaller increments in classification
accuracy.

Another unique featue of the Bayesian approach is that it yields
the probability of a mastery state, giVen-or :don4itiOnal, upon a spe-
cific examinee's tesCSOore. Since the mastery. state is probabilisti-
cally inferred and not assumed, it is not possible to compute false
positive and false negative error rates. However;.the'model seems to
be asking the correct question: "What theprObabilitY that a given
examinee is a master, given his test score?" An alternative binomial
model does give the false positive and false;negative error rates but
does not give explicit information about a speeific "examinee. This

is because it assumes d certain mastery stateand then works "backwards"
to complete the misclassification rates for that hypothesized mastery
state, instead of using prior data to infer the' unobservable mastery
state.

Hershman's (1971) original formulation of the Bayesian model com-
bined several states of nature into a Smklet number Of. states, under
the assumption that the prior probabilities of the new states were
equal. This assumption leads to the cOncluSion that it is generally
undesirable to combine states of nature mastery) because of the severe
distortions in classification accuracy that_arise: In contrast, our,
approach was to simply combine the prior ProbAbilities,'butnotto'
equate them as Hershman did. Hence, p(M1) = .25,J)(M2), = and

P(M3) = .45 would be combined into theyalues'p(M1) =;,.25 and p(M2,3) =
.75. The effect of this method of combining prior probabilitie6 Caused
relatively little change in classification accUracy,'compared to the
case where the mastery states were processed distinctly.''., Our approach
of combining prior information seems more reasonable,. since one would
expect that the probability of one state which is not combined,with
any other should not be affected when the others are;cOmbined. This

may be called an "independence of states,of nature" assumption.

The final rather significant, insight to begleanedconcernAthe
issue of minimal test lengths that Ake required when limits for the
probability of misclassification haVe been specified, by the examiner.
It has been analytically shown that a test can be too'short to'be of
any value in decisionmaking,:depending upon the_misciassification rate
that the examiner is willing to tolerate. What this model does is to,
show explicitly the risks:involvedin using a given length of test,
once the tolerance for MisclassificationerrOr has been specified by,
the examiner.
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APPENDIX

A COMPUTATIONAL EXAMPLE FOR THREE MASTERY STATES

The following example illustrates the computations necessary for
processing data with the Bayesian model. The values chosen for, this
example correspond to Figure 4. Assume that there are three states of
mastery, and unequal prior probabilities for these three states. The
educational decisionmaker must provide estimates for the prior proba-
bilities of master, p(Mi). For this example let us assume the values
to be p(M1) = .5; p(M2) = .3; and p(M3) = .2. The decisionmaker must
also provide estimates for the conditional probability of getting any
given test item right, given each mastery state. Use the following
values as the conditional probability of getting an item right, given
a mastery state: p(11M1) = .8; p(11M2) .= .6; p(11M3) = .5. The con-
ditional probabilities of getting an item wrong given a mastery state
are p(01M1) = .2; p(01M2) = .4; and p(01M3) = .5.

First we need to calculate the probability that an item is answered
correctly. For the overall population,

S

p(tj = correct) = E p(Mi)p(tj = correctIMi) = (.5)(.8)
i=1

Likewise,

+ (.3) (..6) + (.2) (.5) = .68.

S

p(tj = wrong) = E p(Mi)p(tj = wronglMi)
i=1

= (.5)(.2) + (.3) (.4) + (.2) (.5) = .32.

We also need to obtain the set of conditional probabilities for the
different mastery states, given that an individual item was responded
to either correctly or wrongly. The general equation is

P(Milti) - P(Mi)P(tj1Mi)
P(tj)
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Substituting the above values yields

p (M1 tj = correct) = (.5)(.8) .68 = .588;

p (M2 tj = correct) = (.3)(.6) .68 = .265; and

P (M3 tj = correct) = (.2)(.5) .68 = .147.

(Note that the sum equals 1.0.) Finally,

p (M1 tj = wrong) = (.5)(.2) u .32 = .3125;

p (M2 tj =-wrong) = (.3) (.4) ! .32 = .375; and

p(M3 tj = wrong) = (.2)(.5) .32 = .3125.

If 6 items were answered correctly on a 10-item criterion-referenced

N
test, the following n p(Miltj) 'Values result?:

"f

M1 = 3.9 x 10
-4

; M2 = 6.8 x 10
-6

;) M3 = 9.6 x 10-8.

Finally, the general Bayesian formula yields the conditional probability

for each mastery state given the total test score. For example,

P (mi. IT)

(3.9 x 10
4

) - .272.

(.5)
9 (3.9 x 10

-4
) (6.8 x lo

(5)9

(9.6 x 10 ')

.5)9 (.3) (.2)
9

Similar c lculations yiel)d p(M2IT) = .473 and p(M3IT) = .254.
,,,

In order to combine mastery state4M2 And M3 into a single mastery

state (which could represent combininghe,two degrees of nonmastery,

Figure 4, Graph D), the following calculations are required. The values

N
for p(M1) and 7 p(MlItj) remain the sme, .5 and 3.9 x 10-4, respectively.

j=1
,

.

The new nonmastery state (42') occurs as a result of combining the pre- _

vious states M2 and M3. Hence,

p(M2') = p(M2) + p(M3) = .3 + .2 = .5,

p(Mrltj = correct) = p(M2Itj = correct) + p(M3Itj = correct)

= .265 + .147 = .412, and

p(M2Iltj = wrong) = p(M2Itj = wrong) + p(M3Itj = wrong)
= 1315 + .3125 =,.6875.

,
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N
Calculation pf 7 p(M211tj) yields

j=1

1.09 x 10-3 .

Entering these new values'into the general Bayesian ForAula, the follow-
ing valUes of p(Ml'IT) and p(M2'IT) are obtained:

.7)

3.9 x 10
-4

p(Ml'IT) = 4.

(.5)
9 3.9 x 10-

+
4) (1.09 x 10-3)

(.5)9
(.5)9

p (M2' I T) 1.09 x 10
-3

(.5) 9 (3.9 x 10 -4
+

) (1.09 x 10 -3)
(. 5)

9
(.5)9

.264,

.736.

Some interesting properties of the model emerge when an alternative
procedure for combining mastery groups is used. Note that to combine
two mastery states it is not necessary to calculate new values 'for
13(11m2') and p(01M2'). However, it is-possible to show that these val-
ues are weighted averages of p(11M2) and p(11M3), and p(01M2) and
p(01M3), respectively, where the weights are the relative proportions
of the new state'accourGd for by each of the,previous states. The
calculations follow.

Since p(M2) = .3 and p(M3) = .2, state M2 accounts for 60% and M3
accounts for 40% of the new state M2'. Hence, the value of

p(11M2') = (.6)p(11M2) + (.4)p(11M3) = '(.6) (.6) + (.4)(.5) = .56 and

p(01M2') = (.6)p(01M2) + (.4)p(01M3) = (.6)(.4) + (.4)(.5) = .44.

Using these new values,

Finally,

p(tj = correct) = p(M1')p(11M1') + p(M2')p(llM2')
= (.5)(.8) + (.5)(.56) = .68 and

p(tj = wrong) = p(M1')p(01M1') + p(M21)p(01M2')
= (.5)(.2) + (.5)(.44) = .32.

P(M2'11) and p(M2'10) may 15t calculated.

O
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p(m2111) =
P(M21)p(11M21) _

(.5) (.56)
'412

p(1) .68

p(M2' 10) = P(M2t)P(01M2q (.5) (.44)

P
- .6875.

(0) .32

These values are the same as those obtained by the simple addition pro-
cedure shown above.

This exercise serves to illustrate the effect of combining two mas-
tery states. Combining states M2 and M3 creates, in effect, a new deb
scription of:the examinee population in which only two mastery states
are hypothesized. The parameter estimates for ..the new states in this
example, are

p(M1)
p(11M1)

=
=

.5,

.8

p(M2)

p(11M2)
=
=

.5

.56.

In choosing to combine groups, the decisionmaker must conside whether
a. two-state description of the population with parameter estimates such
althose above is'a better representation than the original three-state
descriptions with parameter estimates.

p(Ml) = .5, p(M2) = .3, p(M3) = .2,
P(11M1) = .8, p(11M2) = .6, p(11M3) = .5.

A
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